4,340 research outputs found

    {HyGen}: {G}enerating Random Graphs with Hyperbolic Communities

    No full text

    Next-to-Next-to-Leading Electroweak Logarithms for W-Pair Production at LHC

    Get PDF
    We derive the high energy asymptotic of one- and two-loop corrections in the next-to-next-to-leading logarithmic approximation to the differential cross section of WW-pair production at the LHC. For large invariant mass of the W-pair the (negative) one-loop terms can reach more than 40%, which are partially compensated by the (positive) two-loop terms of up to 10%.Comment: 23 pages, 9 figures, added explanations in section 3, corrected typos and figures 7, 8,

    Real sequence effects on the search dynamics of transcription factors on DNA

    Get PDF
    Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.Comment: 26 pages, 7 figure

    Stable Equilibrium Based on L\'evy Statistics: Stochastic Collision Models Approach

    Full text link
    We investigate equilibrium properties of two very different stochastic collision models: (i) the Rayleigh particle and (ii) the driven Maxwell gas. For both models the equilibrium velocity distribution is a L\'evy distribution, the Maxwell distribution being a special case. We show how these models are related to fractional kinetic equations. Our work demonstrates that a stable power-law equilibrium, which is independent of details of the underlying models, is a natural generalization of Maxwell's velocity distribution.Comment: PRE Rapid Communication (in press

    Random Time-Scale Invariant Diffusion and Transport Coefficients

    Full text link
    Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time averaged mean squared displacement δ2‾\overline{\delta^2} of individual particles remains a random variable while indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within the continuous time random walk model and show that δ2‾\overline{\delta^2} differs from the corresponding ensemble average. In particular we derive the distribution for the fluctuations of the random variable δ2‾\overline{\delta^2}. Similarly we quantify the response to a constant external field, revealing a generalization of the Einstein relation. Consequences for the interpretation of single molecule tracking data are discussed.Comment: 4 pages, 4 figures.Article accompanied by a PRL Viewpoint in Physics1, 8 (2008

    Thermodynamics and Fractional Fokker-Planck Equations

    Full text link
    The relaxation to equilibrium in many systems which show strange kinetics is described by fractional Fokker-Planck equations (FFPEs). These can be considered as phenomenological equations of linear nonequilibrium theory. We show that the FFPEs describe the system whose noise in equilibrium funfills the Nyquist theorem. Moreover, we show that for subdiffusive dynamics the solutions of the corresponding FFPEs are probability densities for all cases where the solutions of normal Fokker-Planck equation (with the same Fokker-Planck operator and with the same initial and boundary conditions) exist. The solutions of the FFPEs for superdiffusive dynamics are not always probability densities. This fact means only that the corresponding kinetic coefficients are incompatible with each other and with the initial conditions

    A lattice Boltzmann model with random dynamical constraints

    Full text link
    In this paper we introduce a modified lattice Boltzmann model (LBM) with the capability of mimicking a fluid system with dynamic heterogeneities. The physical system is modeled as a one-dimensional fluid, interacting with finite-lifetime moving obstacles. Fluid motion is described by a lattice Boltzmann equation and obstacles are randomly distributed semi-permeable barriers which constrain the motion of the fluid particles. After a lifetime delay, obstacles move to new random positions. It is found that the non-linearly coupled dynamics of the fluid and obstacles produces heterogeneous patterns in fluid density and non-exponential relaxation of two-time autocorrelation function.Comment: 10 pages, 9 figures, to be published in Eur. Phys. J.
    • …
    corecore